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Analyse 3 - Feuille 1

Séries numériques

Calcul de la somme d’une série numérique

Exercice 1- Soit
∞∑
n=1

an une série avec sommes partielles données par SN = 9− 2
N2 .

(a) Calculer
10∑
n=1

an.

(b) Calculer
16∑
n=5

an.

(c) Calculer a3.

(d) Trouver une formule générale pour an.

(e) Calculer la somme
∞∑
n=1

an.

Exercice 2- Pour tout entier naturel n et tout x ∈ R \ 2πZ:

(a) calculer Sn(x) =
n∑

k=0

cos(kx) et Tn(x) =
n∑

k=0

sin(kx).

(b) Montrer que, pour un x ∈ R\2πZ fixé, les deux suites
(
Sn(x)

)
et

(
Tn(x)

)
sont bornées.

Exercice 3- On considère la série de terme général

un =
3n− 2

n(n+ 1)(n+ 2)
, n ≥ 1.

(a) Décomposer en éléments simples la fraction

F (x) =
3x− 2

x(x+ 1)(x+ 2)
.

(b) En déduire qu’il existe des constantes a, b, c telles que

Sn :=
n∑

k=1

uk = a

n∑
k=1

1

k
+ b

n∑
k=1

1

k + 1
+ c

n∑
k=1

1

k + 2
, n ≥ 1.

(c) Calculer la limite de (Sn)n et en déduire la valeur de la somme
∞∑
n=1

un.



Exercice 4- (a) Montrer que il existe c ∈ R+ tel que pour tout x ∈ [0, 1]∣∣∣∣∣ ex −
n∑

k=0

xk

k!

∣∣∣∣∣ ≤ cxn+1

(n+ 1)!
.

(Indication: démonstration par récurrence)

(b) En déduire que la série
∑
n≥0

1

n!
converge et déterminer sa valeur.

(c) Montrer que les séries suivantes convergent et déterminer la valeur de leur
somme ∑

n≥0

n+ 1

n!
,

∑
n≥0

n2

n!
,

∑
n≥0

n2

(n+ 1)!
,

∑
n≥0

n3 − n

n!
.

Étude de la nature d’une série

Exercice 5- Soient (un)n, (vn)n deux suites telles que un > 0 et vn > 0 et vérifiant

un+1

un

≤ vn+1

vn
, ∀n ≥ 0.

(a) Montrer que un ≤ u0

v0
vn,∀n ≥ 0.

(b) Montrer que si
∑
n≥0

vn converge, alors
∑
n≥0

un converge.

(c) Montrer que si
∑
n≥0

un diverge, alors
∑
n≥0

vn diverge.

Exercice 6- Soit (un)n une suite telle que un ≥ 0 et m un entier tel que m ≥ 2.

(a) Montrer que si
∑
n≥0

un converge, alors
∑
n≥0

(un)
m converge.

(b) Est-ce que la réciproque est vraie?

Exercice 7- Soit p ∈ R et n ≥ 1. Montrer que les séries de terme générale un sont divergentes
dans les cas suivants:

(a) un = (−1)n;

(b) un = cos(1/n);

(c) un = n sin(1/n);

(d) un = n ln

(
1 +

1

n

)
;

(e) un = n tan(1/n);

(f) un =

(
n+ 2

2n+ 1

)p

;

(g) un =
1

(lnn)p
, n ≥ 2;

(h) un =
en

(n+ 1)p
;

(i) un =
n+ sinn

n2 + cosn
;

(j) un =

((
1 +

1

n2

)n

− 1

)
.



Exercice 8- Soit (un)n une suite numérique convergeant vers 0. Soient a, b, c ∈ R tels que
a+ b+ c = 0. On pose vn = aun + bun+1 + cun+2.

Montrer que la série
∑
n≥0

vn converge et en calculer la somme.

Exercice 9- Soient
∑
n≥0

un et
∑
n≥0

vn deux séries convergentes à termes strictement positifs.

Montrer que les séries∑
n≥0

max{un, vn},
∑
n≥0

min{un, vn},
∑
n≥0

√
unvn,

∑
n≥0

unvn
un + vn

sont aussi convergentes.

Critère de comparaison

Exercice 10- À l’aide de la comparaison avec une série géométrique ou de Riemann étudier la
nature de la série de terme général un, n ∈ N∗ dans les cas suivants:

(a) un = 1− cos(
1

n
);

(b) un =

(
n

n+ 1

)1/n

− 1;

(c) un =
(
3 + (−1)n

)−n

;

(d) un = n−1− 2
n ;

(e) un =
1

1 + x2n
, x ∈ R;

(f) un = ecos(
1
n
) − ecos(

2
n
);

(g) un = xln(n), x > 0;

(h) un =
(1
2
+

1

2n

)n

;

(i) un = n2a
√
n, a > 0;

(j) un = (n2 + 2an)
1
2 − (n3 + 3bn2)

1
3 −

1

2n
; a ∈ R, b ∈ R.

Exercice 11- À l’aide de la comparaison avec une série de Bertrand, étudier la nature de la série
de terme général un dans les cas suivants:

(a) un =
(
1− e

1
n2

)√
ln(n); n ∈ N∗. (b) un =

1

ln(n!)
; n ∈ N, n ≥ 2.

(c) un = nn−a − 1; a > 0.

Exercice 12- Soient a, b ∈ R, a > 0, b > 0. On pose Sn =
n∑

k=1

1

an+ bk
pour tout n ∈ N∗.

(a) Montrer que pour tout n ∈ N∗ et k ∈ {1, 2, . . . , n}∫ k+1

k

1

an+ bx
dx ≤ 1

an+ bk
≤

∫ k

k−1

1

an+ bx
dx.

(b) En déduire que pour tout n ∈ N∗∫ n+1

1

1

an+ bx
dx ≤ Sn ≤

∫ n

0

1

an+ bx
dx.



(c) En déduire limn→∞ Sn.

(d) Soit r > 1. Déterminer la limite limn→∞

n∑
k=1

1

anr + bk
.

Critère de l’intégral

Exercice 13- Étudier la nature de la série de terme général un, n ∈ N∗ dans les cas suivants:

(a) un = ne−n2 ;

(b) un =
1

1000n+ 1
;

(c) un =
1

n lnn(ln lnn)s
, n ≥ 3

et s ∈ R.

Critères de Cauchy et de d’Alembert

Exercice 14- Étudier la nature de la série de terme général un, n ∈ N∗ dans les cas suivants :

(a) un =
(
a+

1

n

)n

, a ≥ 0;

(b) un =
(
1 +

x

n

)−n2

, x ∈ R;

(c) un =
(sin2(n)

n

)n

;

(d) un =
2n

n2

(
sin(α)

)2n

, α ∈ R.

Exercice 15- Soit a un réel strictement positif. Étudier la nature de la série de terme général un

dans les cas suivants :

(a) un =
n!

an
;

(b) un =
n!

nn
, n ∈ N∗;

(c) un =
an

(1 + a)(1 + a2) · · · (1 + an)
;

(d) un =
ann!

nn
; n ≥ 1,

(Indication: on donne la formule de
Stirling :
n! ∼

√
2πn

(n
e

)n

(n → ∞));

(e) un =
(lnn)n

nn
, n ∈ N∗.

Critère de Raabe-Duhamel

Exercice 16- On considère une série numérique de terme général un > 0. Soit β un nombre réel.
On suppose que

un+1

un

= 1− β

n
+

1

n
o(1) (n → ∞).

(a) Soit β < 1. Pour un réel α ∈]β, 1[, on pose

(∀n ∈ N∗), vn =
1

nα
.

Montrer qu’il existe N dans N tel que

(∀n ∈ N), n ≥ N =⇒ vn+1

vn
≤ un+1

un

.

En déduire que la série de terme général un est divergente.



(b) Soit β > 1. Pour un réel α ∈]1, β[, on pose

(∀n ∈ N∗), vn =
1

nα
.

Montrer qu’il existe N dans N tel que

(∀n ∈ N), n ≥ N =⇒ un+1

un

≤ vn+1

vn
.

En déduire que la série de terme général un est convergente.
(c) Soit n ≥ 2, on considère

an =
1

n
et bn =

1

n ln2(n)
.

i. Donner un développement limité à l’ordre 1 de
an+1

an
et de

bn+1

bn
.

ii. Quelle est la nature de la série de terme général an ? Quelle est la nature
de la série de terme général bn ?

Théorème de Mertens

Exercice 17- On considère deux séries numériques de terme général an et bn telles que

• La série de terme général an est absolument convergente, de somme A,
• La série de terme général bn est convergente, de somme B.

On considère An et Bn les sommes partielles des séries
∑

n an et
∑

n bn et on pose

(∀n ∈ N), Cn =
n∑

k=0

ck : ck =
k∑

i=0

aibk−i.

La série de terme général cn est la série produit de Cauchy des séries
∑

n an et∑
n bn.

(a) Montrer, par récurrence sur l’entier naturel n, que

(∀n ∈ N), Cn =
n∑

i=0

aiBn−i.

(b) Montrer que la suite (Cn − AnB) converge vers 0.
(c) En déduire que la série de terme général cn est convergente de somme C = AB.
(d) Dans cette question on considère

(∀n ∈ N∗), an = bn =
(−1)n√

n
.

Étudier la nature de la série de terme général cn =
n−1∑
k=1

akbn−k.

Critère des séries alternées

Exercice 18- Étudier des séries alternées suivantes:



(a)
∑

n≥1(−1)n−1 4
lnn

;
(b)

∑
n≥1(−1)n−1 lnn;

(c)
∑

n≥3
(−1)n

ln(lnn)
;

(d)
∑

n≥1
(−1)n

sin 1√
n

;

(e)
∑

n≥0 cos
(
n
(
π + π

2(n+1)

))
;

(f)
∑

n≥1(−1)n
(
1− cos 1

n

)
;

(g)
∑

n≥1(−1)n sin π
2n

;

(h)
∑

n≥2
(−1)n√

lnn
;

(i)
∑

n≥0(−1)n(
√
4n+ 1−

√
4n);

(j)
∑

n≥1
(−1)nnp

n!
, p ∈ R.

Exercice 19- (a) Montrer que la série
∑
n≥0

(−1)n

n!
est absolument convergente. On note sa somme

par S.

(b) Montrer que la série
∑
n≥0

(−1)n

3n
est absolument convergente et calculer sa somme.

(c) En déduire que la série de terme général un = (−1)n
n∑

k=0

1

k!3n−k
, n ≥ 0 est

absolument convergente et calculer sa somme en fonction de S.

Exercice 20- (a) Montrer que la série de terme général un =
(−1)n−1

n
, n ≥ 1 est convergente.

(b) En appliquant la formule de Taylor-Lagrange à la fonction f définie sur ] −
1,+∞[ par

(∀t ∈]− 1,+∞[), f(t) = ln(1 + t)

sur l’intervalle [0, 1], montrer que la somme de la série de terme général un est
égale à ln(2).

Transformation d’Abel et critère d’Abel

Exercice 21- Soient (an)n et (bn)n deux suites numériques. Pour tout entier naturel n on pose

Bn =
n∑

k=0

bk.

(a) Montrer que

(∀n ∈ N∗),
n∑

k=0

akbk = anBn +
n−1∑
k=0

Bk(ak − ak+1).

Cette dernière égalité est connue sous le nom de transformation d’Abel.

(b) Dans cette question, on suppose que

• la série de terme général (an − an+1) est absolument convergente ;
• la suite (an)n est convergente de limite nulle ;
• la suite (Bn)n est bornée.

Montrer que la série de terme général anbn est convergente. (C’est le critère
d’Abel).

(c) On suppose dans cette question que



• la suite (an)n est décroissante et convergente de limite nulle ;
• la suite (Bn)n est bornée.

Montrer que la série de terme général anbn est convergente.

(d) Applications : Soit (an)n une suite numérique. On suppose que la série de
terme général an est convergente.

i. Montrer que la série de terme général n
1
nan est convergente.

ii. Montrer que la série de terme général (1 +
1

n
)nan est convergente.

Exercice 22- On considère la série de terme général

un =
sin(n)

nα
; n ∈ N∗, α ∈ R.

(a) Montrer que si α ≤ 0, alors un ne tend pas vers 0.

(b) Montrer que si α > 0, alors la série de terme général un est convergente.

(c) Étudier la convergence absolue de la série de terme général un.


